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Abstract

Humans can track objects and predict their motion even when
they are temporarily occluded. How does the absence of
changing visual evidence alter predictive beliefs about a mov-
ing object? In our study, participants were tasked with con-
tinuously anticipating the destination of a simulated ball in
occluded and un-occluded 2.5D environments. Our findings
reveal that humans actively update their judgments through-
out the period of occlusion while making predictions grounded
in physical realism, even as occlusion impairs accuracy. To
model this behavior, we integrate perception with physical rea-
soning, unifying tracking and prediction. This is implemented
via massively parallel probabilistic inference in a hierarchi-
cal generative model for the motion of intermittently visible
objects, represented using the GenJAX probabilistic program-
ming platform. This model predicts time-varying human judg-
ments more accurately than alternative models, suggesting that
humans integrate perception and physics to reason about oc-
cluded motion.
Keywords: Physical Reasoning; Probabilistic Reasoning;
Tracking and Prediction; Occlusion

Introduction
Imagine racing across the rink, eyes locked on the puck,
before it vanishes behind a cluster of ice hockey players,
blocked from view. The instinct is not to stop or hesitate,
but to keep moving, anticipating where the puck will reap-
pear—to go “where the puck is going to be, not where it has
been,” as Wayne Gretzky wisely put it. This is more than
just practical sporting advice; it mirrors the way we navigate
the world. Sensory information helps us understand what is
present and how it changes, yet humans can maintain inter-
nal representations of occluded motion and continue to make
inferences despite missing visual input. In the face of oc-
clusion, our minds don’t simply pause—they rely on internal
models, drawing from past observations, beliefs, and physical
laws to predict what will come next.

The ability to reason under occlusion is a fundamental ca-
pacity that emerges early in human development. Even in-
fants (Kellman & Spelke, 1983; Baillargeon, 1987) repre-
sent static, occluded objects as coherent and permanent. Hu-
mans can also maintain internal representations of occluded
moving objects (Scholl & Pylyshyn, 1999), directing greater
attentional resources toward them (Flombaum et al., 2008).
Furthermore, studies on prediction motion (Tresilian, 1995)
reveal that humans actively track a single object during pe-
riods of occlusion (DeLucia & Liddell, 1998; Makin & Po-
liakoff, 2011). Yet, these investigations often focus on brief
occlusions (< 1s) and simple, unobstructed motion, leaving

open the question of how humans reason about longer occlu-
sion periods, or settings where occluded objects may collide.

Occlusion also introduces an inherent uncertainty in human
judgment of motion. Research by Lyon and Waag (1995) and
Makin and Chauhan (2014) on production tasks demonstrates
that as occlusion duration increases, human performance in
predicting when an object will reappear diminishes, with er-
rors in timing estimates growing linearly as occlusion per-
sists. This suggests that uncertainty not only arises with oc-
clusion, but also deepens as time progresses. How, then, does
this uncertainty influence people’s judgments of occluded
motion when potential collisions are involved?

A central modeling assumption lies in the integration of
physical dynamics with probabilistic reasoning. The “intu-
itive physics engine” framework by Battaglia et al. (2013)
offers a conceptualization of the physical world as a struc-
tured probabilistic generative process, showing that forward
simulations of noisy inputs can capture human judgments
across various tasks involving physical interactions, such as
predicting the stability of a stacked tower of blocks. Sim-
ilarly, Sanborn et al. (2013) showed that optimal Bayesian
inference over a statistical collision model explained human
judgments of mass-collision events. For time-varying predic-
tions, Smith et al. (2013) demonstrated how noisy forward
simulations of physical dynamics aligns with human judg-
ments of future object destinations. Their approach, though
effective with full state information, is limited in occluded
situations as they rely on ground-truth data and lack an obser-
vation likelihood model. Further work by Smith et al. (2019)
addressed expectation violations in intuitive physics, model-
ing human-like surprise at non-physical events like object dis-
appearances. While their model represented physical latents
like position and velocity, it focused primarily on inferring
object existence.

Much of prior work investigates tracking and prediction as
separate problems. In contrast, scenarios that involve reason-
ing through occlusion—such as following a moving object
behind a barrier or predicting the trajectory of a ball when part
of its path is hidden—require both: keeping track of where
an object is and predicting where it will be. We propose that
these processes must be integrated for effective reasoning, as
uncertainty in one process naturally propagates to the other.

To address these gaps, we propose Joint Tracking And
Prediction (JTAP), a computational model that combines per-
ception, tracking and prediction as a unified approach to men-
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Figure 1: (A) Participants were asked to continuously judge if a moving ball (Blue) will hit Red or Green first in a 2.5D envi-
ronment with occluders (Gray) to hide ball motion and Barriers (Black) for possible collisions. (B) Time-varying interpretable
belief states from one run of JTAP. The black dots depict the ball’s positional posterior estimate while the yellow lines illustrate
the ball’s predictive posterior over future trajectories. Multiple runs of JTAP are used by a decision model to make varying
individual-level predictions of red and green, which are then aggregated and compared with participants.

tal physical reasoning. By extending the 2.5D bumper table
domain from Smith et al. (2013) to include occluders, our
model bridges the gap between tracking an unseen object and
predicting it’s future state, combining probabilistic inference
with physically realistic simulations. Our approach maintains
interpretable probabilistic beliefs about an object’s position,
speed, and direction at every timestep of its motion (Fig-
ure 1(B)), and uses this information to make discrete predic-
tions about future outcomes. JTAP thus provides time-varying
individual-level predictions of an object’s future destination.

To test JTAP, we conducted a behavioral experiment requir-
ing participants to judge the future destination of a moving
ball (Figure 1(A)). By varying scene properties, like the ex-
istence of occlusion, object motion and placement of barri-
ers, we found that human predictions continue to be guided
by expectations about the current location of the ball, even
as they become less accurate under occlusion. By aggregat-
ing multiple individual-level predictions, JTAP predicts the
same reasoning patterns, outperforming plausible alternative
hypotheses. These findings suggest that, like human predic-
tions, JTAP adapts its judgments to align with physically plau-
sible predictions, reflecting the graded uncertainty that arises
in the absence of direct visual evidence of the moving ball.

The Joint Tracking and Prediction Model
We designed JTAP as a probabilistic modeling and inference
method to test the hypothesis that people jointly track and
predict the motion of an object in a 2.5D environment, where

occlusions may occur, based on the same video observations
available to the observer (Figure 1). At its core, JTAP as-
sumes people maintain a time-varying representation of the
world state, integrating perception and physical dynamics as
a means of intuitive physical reasoning (Smith et al., 2024).
The state at any time step is described by the object’s posi-
tion, speed, and direction, with state evolution governed via
a stochastic structured dynamics model that incorporates un-
certainty about motion and collisions.

To reason about these states, and similar to previous proba-
bilistic object tracking work (Vul et al., 2009; Farahi & Yazdi,
2020), JTAP uses Bayesian inference to infer the world state
Xt given all observations Y0:t , but extends this framework to
jointly predict possible future states Xt...t+M . With each new
observation, JTAP jointly and approximately updates its cur-
rent belief state and predictive future states of the object via
an observation likelihood model that upweights prior beliefs
that best explain new observations. During the visible motion
of the object, JTAP infers the object’s state and uses that in-
ternal representation to continue tracking the object when it
becomes hidden, accounting for the uncertainty introduced by
the absence of visual evidence. Furthermore, JTAP is capable
of relying on its internal dynamics and inferred knowledge to
predict possible points of collisions with barriers placed at the
edge of occluders, even when these collisions cannot be seen.



Probabilistic Model
Our model is assumed to operate in a known and static 2.5D
environment, with the positions and sizes of barriers and oc-
cluders extracted deterministically from RGB videos of the
scene. The state of the object, Xt , at time t is defined by the
x and y positions (Sxt ,Syt ), speed (νt ) & direction (φt ) of the
object. Observations are represented by a discrete-valued im-
age Yt , where each pixel Ψi j ∈ {0, . . . ,K−1} corresponds to
one of K possible values (i.e. empty space, object, barrier,
occluder) in the i j position. The latent state and observation
evolves as per the following generative process.

Initial State Prior: X0 ∼ P(X0) (1)

Observation Model: Yt ∼ P(Yt |Xt ,ρ) (2)

Physical Dynamics Model: Xt ∼ P(Xt |Xt−1,η) (3)

Initial State Prior The initial state, X0 is sampled from a
broad uniform prior over all possible states. The object’s po-
sition is sampled within the scene dimensions, its direction
from any angle, and its speed up to a maximum speed.

Observation Model Observations are first generated using
a deterministic rendering function from the object state,
Ŷt = Render(Xt), and then each pixel is independently sam-
pled with a ρ probability of being corrupted to one of
K − 1 other colors. As we constrain on images dur-
ing inference, the observation model behaves as a like-
lihood evaluator: P(Yt = yt |Xt = xt ,ρ) = L(xt ,ρ;yt) =

∏i, j
[
(1−ρ)I[ψi j = ψ̂i j]+

ρ

K−1 I[ψi j ̸= ψ̂i j]
]
. Here, ψi j refers

to the observed pixel at position (i, j), and ψ̂i j is the corre-
sponding pixel from the rendered image Ŷt .

Physical Dynamics Model The physical dynamics model
incorporates a collision-aware model of 2D motion, with
noise in direction, speed, and position as shown in Figure 2.
The noise model is inspired by the work of Smith and Vul
(2013) and is used to approximate the logical uncertainty of
computing future physical states. We assume dynamic noise
η = {σCol ,σDir,ΣS,σν}, including noise in how collisions re-
solve (σCol), noise in the direction the ball travels (σDir), po-
sitional uncertainty (ΣS), and uncertainty in the speed (σν).
This generates samples of expected future world states from
prior states and noise: P(Xt |Xt−1,η).

Joint Tracking and Prediction
To perform joint tracking and prediction, we first define track-
ing as a Bayesian filtering problem (Särkkä & Svensson,
2023), where the posterior distribution of interest is the fil-
tering posterior, P(Xt |Y0:t ,ρ,η). Prediction is defined by the
predictive posterior, P(Xt+M|Y0:t ,ρ,η), which extends the fil-
tering posterior M timesteps into the future. We implement
a Sequential Monte Carlo algorithm (Del Moral et al., 2006)
as described in Algorithm 1. At each timestep t, the algo-
rithm outputs a set of N weighted particles, {(wi

t ,x
i
t:t+M)}N

i=1,
representing the belief state of the current state and the fu-
ture trajectory M timesteps ahead. The filtering and predic-
tive posteriors are discretely approximated as:

Frictionless straight-line 
motion & elastic collision

OR

Directional uncertainty 

Positional uncertainty Speed uncertainty 

Figure 2: The physical dynamics model: mean values for
speed (µνt ), position (µSxt

,µSyt
), and direction (µφt ) are de-

rived from frictionless straight-line motion and elastic col-
lision. Speed uncertainty is modeled as a Gaussian distri-
bution N (νt |µνt ,σν), positional uncertainty as a 2D Gaus-
sian N (µSxt

,µSyt
|ΣS), and directional uncertainty as a Circu-

lar Wrapped Gaussian W N S1(φt |µφt ,σCol/Dir), depending on
whether an expected collision occurs.

P(Xt |Y0:t ,ρ,η)≈
N

∑
i=1

wi
t ·δ(xt − xi

t) (4)

P(Xt+ j|Y0:t ,ρ,η)≈
N

∑
i=1

wi
t ·δ(xt+ j−xi

t+ j) for j = 1, ...,M (5)

As described in Algorithm 1, the proposal distribution,
Q(Xt |X0:t−1,Y0:t), plays an important role in updating the
model’s beliefs at each timestep by generating candidate
states based on past observations and states. Because each
particle represents a discrete hypothesis about the world state
Xt , the proposal distribution allows JTAP to sample a single
plausible world state, focusing this sample on values that are
more likely to be plausible given the prior state and current
observation, emulating the way the human mind directs at-
tention to the most recent evidence while disregarding less
likely possibilities. As illustrated in Figure 3, JTAP constructs
the proposal distribution using a combination of enumerative
grid inference and data-driven estimation. For positions, we
discretize the scene into a uniform 2D grid, where each cell
corresponds to a fixed spatial area. All grid positions are eval-
uated under the probabilistic model to compute a grid of log
probabilities, which is then used to sample a cell via a cat-
egorical distribution. The final position is drawn uniformly
from within the sampled cell’s spatial bounds.

To propose speed and direction, JTAP extrapolates the cur-
rently inferred trajectory by identifying the last visible seg-
ment before occlusion or the last point of collision. It then lin-
early projects forward the expected speed and direction from
this segment. These projected values define the mean pa-
rameters for a wrapped Gaussian (for direction) and a Gaus-
sian (for speed), from which new samples are drawn. Dur-
ing occlusion, the observation model provides no informative



Algorithm 1 Joint Tracking and Prediction
Input: Observations y0:T , noise parameters η, ρ, particle
count N, resampling threshold Nthreshold, prediction steps M.
Output: Weighted particles {wi

t ,x
i
t:t+M}N

i=1 for t = 0, . . . ,T .
1: Initialize particles {xi

0}N
i=1 by proposing xi

0 ∼ Q(X0|y0)

2: w̃i
0 =

L(xi
0,ρ;y0)·P(xi

0)

Q(xi
0|y0)

, i = 1, . . . ,N

3: Self-Normalize: wi
0 = w̃i

0/∑
N
j=1 w̃ j

0, i = 1, . . . ,N
4: for t = 1 to T do

▷ Tracking Phase
5: for i = 1 to N do
6: Propose xi

t ∼ Q(Xt |xi
0:t−1,y0:t)

7: w̃i
t = wi

t−1 ·
L(xi

t ,ρ;yt )·P(xi
t |xi

t−1,η)

Q(xi
t |xi

0:t−1,y0:t )

8: end for
9: Self-Normalize: wi

t = w̃i
t/∑

N
j=1 w̃ j

t , i = 1, . . . ,N
10: Neff = 1/∑

N
i=1(w

i
t)

2

11: if Neff < Nthreshold then
12: for i = 1 to N do
13: Resample j ∼ Categorical({w j

t }N
j=1)

14: xi
t ← x j

t , wi
t =

1
N

15: end for
16: end if

▷ Prediction Phase
17: for j = 1 to M do
18: for i = 1 to N do
19: Sample xi

t+ j ∼ P(Xt+ j|xi
t+ j−1,η)

20: end for
21: end for
22: Save weighted particle set: {(wi

t ,x
i
t:t+M)}N

i=1
23: end for

evidence, so the proposal defaults to the physical dynamics
model governed by the simulation noise parameters. This
yields samples consistent with the physical dynamics model
but with appropriate uncertainty, enabling JTAP to maintain
plausible roll-outs despite the absence of direct visual input.

While JTAP is inspired by the forward simulation approach
of Smith et al. (2013), it differs fundamentally in purpose and
structure. Smith et al. (2013)’s model assumes access to the
ground-truth object state at every timestep and performs noisy
forward rollouts from these known inputs. As a result, it does
not perform inference, lacks an observation model, and can-
not reason under occlusion. In contrast, JTAP performs joint
inference over both current and future latent states directly
from noisy visual input, using a principled observation model
to update beliefs even when the object is hidden.

The Red-Green Task

To evaluate JTAP, we conducted a behavioral experiment de-
signed to test human tracking and prediction.

Figure 3: The probabilistic proposal implemented in JTAP.
At each time step, each particle must update its discrete rep-
resentation of the variables representing the state of the world.
Positions (left) are updated by forming a grid around the prior
position, then evaluating the probability of the ball being at
each grid position. One grid position is sampled relative to
these probabilities, and that position is uniformly perturbed
within a small continuous interval to produce the proposal.
The speed and direction (right) are sampled around the speed
and direction imputed from the last observed positions from
the point of last inferred collision.

Behavioral Experiment
Procedure Participants completed trials where a frictionless
simulated ball with elastic collision dynamics moved in a 2D
environment with barriers and occluders. Each trial ended
when the ball reached a red or green region. Participants
continuously predicted the ball’s destination, with a score
based on accuracy and speed, following Smith et al. (2013):
Score = 20+100∗ (Prop(Correct)−Prop(Wrong)). This en-
couraged quick, accurate decisions while penalizing wrong
choices when uncertain. Participants were shown the scene
only from the start of each trial, with no prior context and
they predicted the ball’s final destination by pressing either
’F’ for Red or ’J’ for Green. No button press or both buttons
pressed were treated as no decision.

Stimuli A total of 50 trials were generated as stimuli, pre-
sented as 400x400 pixel videos at 30 FPS with ball motion
simulated using PyMunk (Blomqvist, 2024). Each video fea-
tured black rectangular barriers, gray occluders partially or
fully blocking visual access for varying durations (Tocclusion),
and rectangular red and green goal regions with a blue circu-
lar ball (10px radius). Of the trials, 34 included occlusion,
and 16 had un-occluded paths. We included four catch trials
with obvious outcomes (e.g. the ball was always moving di-
rectly at one goal and away from the other). Trial durations
ranged from 4.17s to 9.17s, with Tocclusion between 2.90s and
8.13s. To counterbalance color bias, the goal colors were ran-
domly shuffled. Data were corrected during post-processing,
and trial order was randomized for each participant.

Participants We recruited 60 participants (mean age 37.69;
35 male, 25 female) via Prolific. All participants had normal
or corrected-to-normal vision, and no colorblindness. They
were compensated US$15/hour, and the experiment took ap-
proximately 14 minutes. Participants completed three famil-
iarization trials before the main experiment. One participant’s



data was excluded for scoring below 40 on 3 of 4 catch trials.

JTAP Implementation
To implement a model of the Red-Green task, we assume that
JTAP represents the evolving beliefs of an individual person
about the current and future state of the ball’s motion. How-
ever, as described in the next section, people must make a
discrete decision at each time point about whether and which
goal to indicate that the ball will reach. Therefore we apply
a deterministic decision model that uses the raw belief states
to get individual pseudo-participant key press decisions, and
aggregate those decisions over multiple model runs to match
to aggregate human data.

Raw Beliefs We estimate the red-green outcome, P(ζt),
where ζt ∈ {Red,Green,Uncertain}, by checking the predic-
tive outcomes of all particles and using the weighted predic-
tions to approximate this raw belief at each timestep.

Decision Model We implement a decision model by assum-
ing that JTAP will make a discrete prediction that the ball will
hit the red or green goal when the raw belief about that fu-
ture event exceeds a threshold, θpress. Since people cannot
immediately process a scene and issue motor commands to
press a button, we align model and human decisions by intro-
ducing a delay, τdelay, in JTAP’s decision-making. To capture
decision stickiness (as people are unlikely to change their de-
cision based on momentary fluctuations in belief), we define
minimum time periods, τpress and τrelease, where a sustained
belief above the threshold triggers a press, and a sustained
belief below the threshold triggers a release. To model the de-
cision making variability between humans, these parameters
are sampled from a Gaussian distribution. This mechanism
also captures two key forms of uncertainty that lead to people
pushing the ”Uncertain” button. Ignorance arises when pre-
dictive particles do not reach either goal—causing all beliefs
to remain below threshold—leading the model to stay in the
“Uncertain” state. Equivocation arises when predictive parti-
cles are split between outcomes, keeping both red and green
beliefs near threshold but not dominant, also resulting in no
keypress. These uncertainty types are resolved through the
combined effects of thresholding, press/release timing con-
straints, and delayed response.

Alternative Hypotheses To evaluate the hypothesis that
joint tracking and prediction during occlusion is a crucial
human-like process, we introduced two alternative hypothe-
ses to JTAP as ablative baselines. The frozen model keeps red-
green beliefs (P(ζt)) constant during the period of occlusion,
testing the hypothesis that people stop tracking and hold their
beliefs until the object reappears. We define the period of oc-
clusion as any stimulus frame the object is not fully visible in.
The decaying model exponentially decays these belief states
to Uncertain with a decay constant of 2.67s in that same time
period, testing if humans become more uncertain about the
object’s destination as occlusion duration increases.
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Figure 4: Joint histogram of JTAP (x-axis) and human (y-
axis) decisions across all trials for each timestep. Left: prob-
ability of making a decision, either red or green. Right: prob-
ability of choosing green given a decision was made. Colors
indicate the log-frequency of time points within each bucket;
redder means more observations. Data along the diagonal in-
dicate good match between human and model predictions.

Computational Details All modeling and inference are im-
plemented as a sequential probabilistic program using GenJAX
(Becker et al., 2024), a GPU-accelerated probabilistic pro-
gramming framework. Observations are sampled in intervals
of 133ms (1 in every 4 frames), reducing computational cost
while capturing relevant object motion. For each trial, 100
runs of JTAP and the alternates are generated with differ-
ent random seeds to obtain 100 sets of raw beliefs. Noise
parameters are tuned individually for each computational
approach—JTAP, the frozen, & decaying models—via grid
search, optimizing for the Root Mean Squared Error (RMSE)
against red, green, and uncertain levels across all timesteps
from participant data. A particle count of N = 25 was the
best fit for all 3 models. Similarly, the mean and standard de-
viation for the Gaussian distributions of the decision model
parameters were tuned via grid search. To approximate ex-
pected decisions, 100 decision model parameter sets are sam-
pled per run of JTAP or alternates, resulting in 10,000 pseudo-
participants, with the same parameters used across all trials.

Results
Human Performance As the difficulty of each trial varied
significantly, the participants’ mean score varied from 11.3
to 97.9. Nonetheless, participants’ predictions were reliable
across trials (Intraclass Correlation = 0.952; Shrout and Fleiss
(1979)). Participants mean performance was significantly
better (t(48) = 3.94, p < 0.001) in trials without occlusion
(Mean = 64.5) than trials with occlusion (Mean = 38.9).

Model Performance To analyze the performance of JTAP,
we examine both the probability of making a decision
by pressing either the green or red button: decision
(P(Red or Green)i j) and the conditional probability of choos-
ing green, given a decision to press has been made: choice
(P(Green|Red or Green)i j), across all timesteps (i) in all tri-
als ( j). To account for the reliability of participant data at
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Figure 5: Joint histogram of model and human decision for
occluded time points only, split by JTAP model and alter-
nates. During these diagnostic time points, the JTAP model
explains when people decide to make predictions and which
predictions people make better than the alternatives.

any time-point i j, we weight all pairs of participant-model
choices by the proportion of humans who pressed a button.
The keypress outputs from JTAP showed substantial correla-
tion in both decisions (r = 0.94) and choices (rwtd = 0.86).
As both JTAP and participants are largely unanimous in their
choices across many time-steps, we plot the log-frequency of
these choices in Figure 4 to focus on time-steps where there
is less agreement between participants. The heatmap on the
left shows that JTAP effectively captures the uncertainty gra-
dations present in participant decisions. The heatmap on the
right depicts that JTAP also exhibits human-like uncertainty
in choice. Nevertheless, the gradations are more spread out,
indicating that while JTAP captures the direction of chang-
ing beliefs among participants, it occasionally deviates from
perfectly time-aligning with the exact probability levels.

Alternative Hypotheses Although we fit model parameters
to all trials, we focus on timesteps with occlusion for model
comparisons, as we expect JTAP and alternatives to perform
similarly when the ball is visible. We find that JTAP outper-
forms both alternative hypotheses. The correlation for deci-

sions with human keypresses was higher in JTAP (r = 0.93)
compared to the frozen (r = 0.59, p < 0.001) and decaying
(r =−0.08, p < 0.001) models. The left column of heatmaps
in Figure 5 reveals that unlike the frozen and decaying mod-
els, JTAP is capable of matching human decisions when a
larger proportion of participants decide to press a button. This
effect is worst in the decaying model, where decaying beliefs
make it less likely for the model to press a button even when
most participants do. The right column of Figure 5 shows that
JTAP correlates better (rwtd = 0.65) than the frozen (rwtd =
0.19, p < 0.001) and decaying (rwtd = 0.19, p < 0.001) mod-
els with humans for choices. In contrast, the gradations in
both the frozen and decaying models don’t match human pat-
terns well, over and under predicting the probability of choos-
ing green frequently. These findings suggest that humans ac-
tively reason when the object is occluded. Moreover, since
the decision model accounts for reaction time delay, this dis-
tinction is better explained by the changing belief states ex-
posed by JTAP during occlusion, compared to alternates.

The examples in Figure 6 demonstrate configurations in-
ducing varying reasoning patterns between JTAP and the al-
ternatives. Trial A shows a case where the occluder’s place-
ment is inconsequential, and people consistently expect the
ball to hit green, captured by JTAP and the frozen model, but
not the decaying model. Trial B exemplifies how different
JTAP runs can reinforce different beliefs about the outcome
under occlusion, with the brief period of occlusion inducing a
subtle but similar change in participants and JTAP alike. Trial
C exhibits a similar reasoning pattern, where participant deci-
sions are well explained by JTAP during the period of occlu-
sion, with both red and green beliefs rising. Trial D presents a
case where humans gradually predict red after the ball fails to
appear on the left side within a certain time period. This rea-
soning cannot be captured by the alternatives for they do not
reason during occlusion. In contrast, JTAP maintains noisy
yet physically realistic beliefs and predictions throughout oc-
clusion, allowing it to align well with the trend in human data.

Discussion
This research quantitatively characterizes humans’ ability to
continually update predictions about an object’s motion even
while it is occluded. JTAP, integrating perception, probabilis-
tic reasoning, and physical knowledge, captures time-varying
patterns of human behavior. While our work captures hu-
man behavior in a simplified 2.5D setting, it serves as a step
toward extending these models to 3D reasoning contexts. Fu-
ture extensions of JTAP could incorporate full 3D object ge-
ometry and occlusion, enabling applications to more com-
plex physical tasks such as tabletop interaction or robotic
planning. Meeting this challenge will require handling high-
dimensional state spaces, richer visual input, and more struc-
tured uncertainty.

Future refinements could improve alignment with human
response timing and variability. In particular, we observe that
JTAP captures the trend of changing beliefs over outcomes
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Figure 6: Illustrative examples of models and alternates in comparison with human predictions over four trials (A - D). Trial A
shows the limitation of the decaying model on a simple scene while trials B to D demonstrate how joint tracking and prediction
under occlusion provide a more compelling account for the subtle yet telling time-varying human responses.

among humans but sometimes struggles to align exactly with
the timing or probability levels. This suggests that while our
model captures human-like reasoning, incorporating human
prior over features like motion direction or assumptions about
experimenter demands, could improve its precision. These
results show that halting or decaying belief states during oc-
clusion fails to capture hidden collisions and the associated
physical reasoning.

Future work could apply this Bayesian framework to other
aspects of physical reasoning, such as predicting outcomes
when objects are unseen—e.g., if a ball rolls under a couch
and doesn’t come out, is something blocking it? Additional
behavioral experiments could also systematically manipulate
scene geometry—such as varying the size, placement, and
alignment of barriers, occluders, and goal regions—to ana-
lyze how these spatial changes affect human judgment under
occlusion, and whether the model captures these fine-grained
patterns. And this framework could be extended to support
more general tracking and prediction – for instance predicting
where a pedestrian walking under and underpass will emerge
by using simulations of agent motion (Shu et al., 2021) in-
stead of physical dynamics. These extensions would help test
the generality of our approach and reveal which components
of intuitive physics are most sensitive to visual uncertainty
and scene structure complexity.
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